Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Rare earth elements (REEs) are crucial for clean energy technologies but are predominantly purified by solvent extraction using strong acids. This work explores two adsorbents with selective chemistry based on lanmodulin-derived peptides. Two membrane adsorber platforms were synthesized: (1) a poly(vinylbenzyl chloride) membrane with a grafted poly(allyl methacrylate) network and (2) a poly(arylene ether sulfone)membrane with allyl pendant groups. Both membrane adsorbers were functionalized with LanM1 peptides via a thiol−ene click reaction. The morphology, surface chemistry, and adsorption of select trivalent lanthanides (La, Ce, Pr, Nd) were characterized in pH 4−5 solutions, mimicking phosphogypsum waste streams. Results from the adsorption experiments indicate that the lanmodulin peptide sequence maintains its ability to bind when it is immobilized on the surface of polymer fibers for some ions. Despite the different adsorbent designs, the measured capacity of both adsorbents is on the same order of magnitude, which may be explained by differences in the surface area of the fibersmore » « less
- 
            Nanocomposites integrate functional nanofillers into viscoelastic matrices for electronics, lightweight structural materials, and tissue engineering. Herein, the effect of methacrylate-functionalized (MA-SiO 2 ) and vinyl-functionalized (V-SiO 2 ) silica nanoparticles on the thermal, mechanical, physical, and morphological characteristics of poly(ethylene glycol) (PEG) nanocomposites was investigated. The gel fraction of V-SiO 2 composites decreases upon addition of 3.8 wt% but increases with further addition (>7.4 wt%) until it reaches a plateau at 10.7 wt%. The MA-SiO 2 induced no significant changes in gel fraction and both V-SiO 2 and MA-SiO 2 nanoparticles had a negligible impact on the nanocomposite glass transition temperature and water absorption. The Young's modulus and ultimate compressive stress increased with increasing nanoparticle concentration for both nanoparticles. Due to the higher crosslink density, MA-SiO 2 composites reached a maximum mechanical stress at a concentration of 7.4 wt%, while V-SiO 2 composites reached a maximum at a concentration of 10.7 wt%. Scanning electron microscopy, transmission electron microscopy, and small-angle X-ray scattering revealed a bimodal size distribution for V-SiO 2 and a monomodal size distribution for MA-SiO 2 . Although aggregates were observed for both nanoparticle surface treatments, V-SiO 2 dispersion was poor while MA-SiO 2 were generally well-dispersed. These findings lay the framework for silica nanofillers in PEG-based nanocomposites for advanced manufacturing applications.more » « less
- 
            Aryl chlorides (ArCl) or aryl fluorides (ArF) were used in polycondensation reactions to form poly(arylene ether sulfone)s (PAES). Interestingly, the kinetics of the ArF reaction fit a third-order rate law, which is attributed to the activation of the carbon–fluorine bond by two potassium cations (at least one bound to phenolate), which form a three-body complex. The ArCl monomer follows a second-order rate law, where a two-body complex forms at the initial state of the aromatic nucleophilic substitution (S N Ar) pathway. These metal cation-activated complexes act as intermediates during the attack by the nucleophile. This finding was reproduced with either the potassium or the sodium counterion (introduced via potassium carbonate or sodium carbonate). Through a combination of experimental analysis of reaction kinetics and computational calculations with density functional theory (DFT) methods, the present work extends the fundamental understanding of polycondensation mechanisms for two aryl halides and highlights the importance of the CX–metal interaction(s) in the S N Ar reaction, which is translational to other ion-activated substitution reactions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
